
Selecting Secret Sharing Instantiations for Distributed Storage
Giulia Traverso

TU Darmstadt, Germany
gtraverso@cdc.informatik.tu-darmstadt.de

Paul Ranly
TU Darmstadt, Germany

paulmoritz.ranly@stud.tu-darmstadt.de

Denis Butin
TU Darmstadt, Germany

dbutin@cdc.informatik.tu-darmstadt.de

Johannes Buchmann
TU Darmstadt, Germany

buchmann@cdc.informatik.tu-darmstadt.de

ABSTRACT
Distributed storage systems using secret sharing enable information-
theoretic confidentiality, making them especially suitable for the
outsourced storage of sensitive data. In particular, proactive secret
sharing enhances the confidentiality protection of such systems
by periodically renewing data shares. This adds a time constraint
for an attacker trying to reconstruct the initial data by collecting
enough shares. Proactive secret sharing can only be carried out
effectively if the participating servers (grouped in storage service
providers) are reliable. The selection of participating servers is thus
critical to security. In practice, data owners have little means to
make an informed decision in this regard. Furthermore, optimal
share allocation depends on data-owner-specific confidentiality,
availability and cost requirements. Data owners also require guid-
ance with respect to the selection of the underlying secret sharing
scheme. In this paper, we introduce a novel approach to guide data
owners in the instantiation of secret sharing for outsourced storage.
The decision support covers both the allocation of shares to specific
storage service providers, and the choice of the underlying secret
sharing scheme. We realise our approach as a solver for a set of
integer linear programming problems. We then dually evaluate our
approach. First, we evaluate the feasability of constraint solving
by implementing the linear programs in PuLP and inputting them
to the GLPK linear problem solver. The evaluation involves sixty
data centers from six major public cloud providers. Second, we
compare the performance of hierarchical and non-hierarachical
secret sharing schemes to determine if the performance loss due to
the support of hierarchical structures is affordable. Ultimately, our
approach aims at supporting non-expert data owners in making the
most appropriate choices for the selection of a secret-sharing-based
distributed storage system, based on their requirements.

CCS CONCEPTS
• Security and privacy → Information-theoretic techniques; Dis-
tributed systems security; Usability in security and privacy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCC’19, July 7–12 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

KEYWORDS
Long-term security, secure storage, secret sharing, decision support
system, information-theoretic confidentiality.

ACM Reference Format:
Giulia Traverso, Paul Ranly, Denis Butin, and Johannes Buchmann. 2019. Se-
lecting Secret Sharing Instantiations for Distributed Storage. In Proceedings
of International Workshop on Security in Cloud Computing (SCC’19). ACM,
New York, NY, USA, 11 pages.

1 INTRODUCTION
Sensitive digital data, such as electronic health records, require
lengthy secure storage. Often, the confidentiality of such data must
be protected for at least a human lifetime. A naive approach to this
problem is to encrypt the data and then outsource the encrypted
data to a storage server. However, this is not a viable solution to pro-
tect the confidentiality of data with stringent privacy requirements
such as health records for two main reasons. First, there could al-
ways be a sudden cryptanalytic advance, where algorithms that
solve the hardness problems currently used encryption schemes
are based on. This enables data providers and intelligent agencies
to store large amounts of encrypted data and then to decrypt them
later once the hardness problems of the encryption algorithms be-
come computationally feasible to be solved. Second, undeniable
progresses have been made lately with respect to the construction
of quantum computers [7, 38], which, once available, are able to
break most-used public-key cryptography. In addition, availability
of the outsourced data must also be guaranteed. For instance, avail-
ability and quick retrieval of electronic health records (e.g. blood
group when in need of a urgent transfusion) might be a crucial to
save the life of patients.

Distributed storage systems based on secret sharing [30] are
relatively expensive due to the need for multiple storage servers.
However, they are a promising solution to protect the confidential-
ity and availability of critically sensitive data sets, for which a higher
cost is justifiable. Secret sharing schemes are neither vulnerable
to cryptanalysic progress, nor attacks run on quantum computers
because they provide information-theoretic confidentiality. Shares
of the data to be outsourced are generated so that each share is
distributed to one of the storage servers making up the distributed
storage system. Information-theoretic confidentiality, also referred
to as unconditional security, is provided because the outsourced
data can be reconstructed only if a minimum number of shares (and,
thus, storage servers) is available and no information about the data
is leaked otherwise. Availability of the outsourced data is provided
because secret sharing-based distributed storage systems are robust

1

SCC’19, July 7–12 2019, Auckland, New Zealand Traverso, Ranly, Butin, and Buchmann

to a certain amount of unavailable storage servers. This is again
due to the fact that less shares (and, thus, less storage servers) than
those generated are necessary to reconstruct the outsourced data.

Confidentiality of data is guaranteed in the long-term by proac-
tive secret sharing [12], where the shares are periodically updated
to cope with a mobile adversary that, over time, can compromise
enough storage servers to successfully reconstruct the outsourced
data. Proactive secret sharing is performed solely by the storage
servers in a distributed fashion, without the intervention of the data
owner. Thus, long-term confidentiality of data in secret-sharing-
based distributed storage systems relies on high-performing storage
servers, reliably carrying out periodically proactive secret sharing.
We use the term performance in a broad sense. Furthermore, dis-
tributed storage systems are in practice composed of storage servers
owned by different storage service providers (SSPs), so that the sys-
tem is not vulnerable to a single point of failure (in this case, the
key management of a SSP). This is the outsourcing scenario where,
from now on, we assume data owners want to perform proactive
secret sharing to protect the confidentiality of stored data.

However, despite providing confidentiality of data, the above
solution where proactive secret sharing is performed across the
storage servers from different SSPs does not fully address more
realistic scenarios such as companies, hospitals, and institutions.
The reason is twofold. On the one hand, companies, hospitals, and
institutions are organized hierarchically. This means that the each
member or employee covers a specific position with well defined
powers and rights, even concerning the access of documents and
file. These access rules should be reflected also by the secret sharing
scheme used to set up the distributed storage system. On the other
hand, there is no guarantee that the storage servers will reliably
carry out the tasks their are supposed to perform [15] (in this case,
proactive secret sharing). It is therefore extremely difficult to choose
in practice high-performing storage servers to be included in the
distributed storage system. This is due to both the lack of insight of
data owners with respect to the quality of service of offered by SSPs
in available in the marketplace and the lack of standardized and
transparent means providing accurate and reliable performance
figures. This issue has been also pointed out by NIST [14], making
decision support an important paradigm in cloud computing. For
instance, RSA [28] already announced a Trust Authority (TA) that
provides decision support in the cloud. Furthermore, even with
accurate performance figures in hand, data owners still lack of the
cryptographic expertise to choose the right secret sharing scheme
suitable for their needs and the state of the storage servers. The
performance of the storage servers might indeed not be constant
over time [29] and users do not often have the insight to observe
this and act accordingly. Also, the secret sharing-based distributed
storage system set up should protect the confidentiality of the data,
while achieving the best configuration in terms of storage cost too.
The set up of the distributed storage system should also allow for
securely perform computations on the shared data.

Contributions. In this paper, we address the above problems by
introducing a decision support protocol run by the TA. The protocol
guides data owners in choosing high-performing storage servers,
and in setting up the most cost-efficient distributed storage system

configuration that also meets the desired confidentiality and avail-
ability requirements. The suggested configuration also suggests
the best-suited secret sharing scheme, and takes into account the
hierarchical structure of the organization deploying it. Our decision
support protocol assumes the existence of a performance scoring
mechanism for selecting the highest-performing storage servers.
Such a performance scoring mechanism has been introduced in
previous work [34]. In terms of the underlying proactive secret
sharing schemes, both non-hierarchical and hierarchical scenarios
are supported. We include:

• The (non-hierarchical) proactive Herzberg version [12] of
Shamir’s secret sharing scheme [30];

• The proactive versions [35] of Tassa’s two hierarchical secret
sharing schemes [33].

We selected these specific secret sharing schemes for performance
reasons. They are polynomial-based, which leads to fast reconstruc-
tion, unlike other prominent schemes such as the ones by Brick-
ell [5] and Simmons [31]. However, the decision support protocol
itself is not tied to any specific secret sharing scheme. In this sense,
this part of our contribution can be seen as a generic framework.
Concretely, to formalize the data owner requirements input to the
decision support protocol, we model confidentiality, availability
and cost constraints using linear programming. To evaluate the
practicability of using constraint solving in this setting, we perform
experiments on sixty data centers from six major cloud providers.
Our results demonstrate that configurations optimizing the given
constraints are found within minutes at most. The second part of
our evaluation focusses on the time overhead due to the use of
hierarchical secret schemes. Such schemes can usefully mirror the
hierarchical structure of an organization, but this feature incurs
additional complexity. To this end, we compare the run times of
individual algorithms of the three above secret sharing schemes. We
find that hierarchical secret sharing schemes cause only minimal
performance loss for the online phase. For the offline phase, we
observe a more significant slowdown, but this does not affect data
owners directly.

Outline. The rest of the paper is organized as follows. We start
by discussing related work with respect to hierarchical secret shar-
ing (HSS) and outsourced multi-party computation (Sec. 2). Next,
we recall preliminary notions about distributed storage systems
based on multiple SSPs, Shamir (extended to a proactive scheme by
Herzberg) secret sharing and Tassa (extended by Traverso) conjunc-
tive and disjunctive secret sharing (Sec. 3). We then describe our
core contribution: a decision support system guiding data owners in
the selection of a suitable secret sharing scheme, in the selection of
storage servers and in the allocation of shares between the different
SSPs and storage servers (Sec. 4). Next, we evaluate our approach by
implementing the integer linear programming problem introduced
in the previous section using PuLP, and applying the GLPK linear
problem solver to it (Sec. 5). Based on the evaluation’s result, a
discussion comparing candidate secret sharing schemes follows
(Sec. 6). We then conclude (Sec. 7).

2 RELATEDWORK
We now survey related work about HSS and cloud multi-party
computation (MPC).

2

Selecting Secret Sharing Instantiations for Distributed Storage SCC’19, July 7–12 2019, Auckland, New Zealand

Hierarchical Secret Sharing. HSS [10] addresses scenarios where
the shareholders are not equal in their reconstruction ability with
respect to the shared message. For instance, in companies employ-
ees are organized in hierarchical levels and the shares they receive
should reflect this structure. The first solution for HSS was pro-
posed by Shamir [30], where the higher the level a shareholder is
assigned to the more shares it gets. This approach overloads the
most powerful shareholders, both from the storage space consump-
tion and the safeguard of the shares themselves. Instead, approaches
by Brickell [5] and Simmons [31] manage to distribute to each share-
holder one share only. Generated shares differ with respect to how
informative they are. More informative shares are distributed to
shareholders assigned to higher levels, and vice versa. However,
these two solutions are inefficient and, thus, they cannot be used
in practice. In [33], Tassa proposed polynomial-based HSS schemes
that generate shares of the same lengths and are comparable to
Shamir’s secret sharing scheme in terms of efficiency. Furthermore,
Traverso et al. in [35] and [36] provided algorithms for Tassa’s se-
cret sharing schemes for renewing the shares, changing the access
rules, and performing operations on shared data. These algorithms
equip Tassa’s scheme with the same functionalities that Shamir’s
secret sharing provides and that are valuable when it comes to
outsourcing the storage of data.

Outsourcing Multi-Party Computation. In [17], the problem of
outsourcing MPC to the cloud computing that carries out computa-
tions as a service was first considered. In particular, secure MPC
is formalized in a server-aided setting, where an untrusted server
performs computations for computationally weak users without
learning any input nor the output through garbled circuits. A prac-
tical perspective of this problem is provided by the same authors in
[18] and they discuss computations outsourced to multiple physical
machines in [19]. In [20], it is discussed how the security assump-
tions of outsourced MPC and the multiplication property of the
underlying secret sharing scheme can be weakened when trusted
hardware and a semi-trusted third party are provided and the com-
putations are performed my multiple cloud providers rather than
one. Instead of using secret sharing, in [25] a solution based on
additively homomorphic encryption where every user has its own
pair of private-public key is presented. The server where these
encrypted data are outsourced performs the requested computation
without breaking confidentiality. In [16], a solution for outsourcing
MPC to multiple untrusted servers relying on MACs is proposed,
which ensures confidentiality when at least one server is trusted.
Our approach differs from the works discussed above: we address
the problem of outsourcing MPC on multiple physical machines
where no encryption nor key management are involved and the
underlying secret sharing scheme is not weakened in its properties
nor augmented with additional schemes. Thus, the majority of the
parties has to be honest to ensure security. Instead, scores are com-
puted from performance and availability ratings, which are gauged
by a trusted third party, the TA.

3 PRELIMINARIES
In this section, preliminary notions of distributed storage systems
based on multiple SSPs are provided in Sec. 3.1 and the secret

sharing primitives enabling such outsourced storage are presented
in Sec. 3.2.

3.1 Distributed Storage Systems
Data storage is one of the main services offered in cloud computing
to users. When document owners do not have the resources to
store large amounts of data, they outsource them to multiple stor-
age servers owned by different commercial SSPs by leveraging the
secret sharing primitive to achieve confidentiality and availability.
Secret sharing-based distributed storage systems [21, 32] are a so-
lution for long-term data protection that do not involve encryption
prior to data outsourcing. Thus, they do not introduce additional
challenges with respect to key protection and key management
nor weaknesses with respect to unbounded attackers. The future
existence of an enhanced storage service built upon multiple coop-
erating providers is motivated by two main arguments. First, it is
at present affordable to have multi-CSPs applications and services.
Infrastructure as Code [39] makes it possible to programmatically
define multi-provider resource allocations and application modules.
This simplifies not only the development, but also operations on
different CSPs. In particular, solutions to build [6, 11, 23] and con-
figure [26, 27] cloud services across multiple CSPs already exist.
Second, CSPs strongly differentiate their offers to justify their pres-
ence on the market [9]. Spot instances, serverless computing, and
reserved instances [37] provide Infrastructure as a Service (IaaS)
resources at different trade-offs in terms of performance, latency,
and pricing. For example, cheap and revocable spot instances of-
fer the possibility to obtain computational power at a lower price.
Thus, SSPs hosted on data center from different CSPs may offer
different solutions for distributed storage. For simplicity, in this
paper we consider the model where each SSP owns its own data
centers and offer to data owners several storage servers where to
store the shares.

3.2 Suitable Secret Sharing Schemes for
Distributed Storage Systems

Due to space constraints, we only recall the seminal, non-proactive
schemes by Shamir and Tassa here. Their proactive versions are
described in Appendix B. Secret sharing is a cryptographic primitive
that generates shares of a message such that specific subsets of
those shares are necessary to reconstruct the message. Shamir’s
and Tassa’s secret sharing schemes (with their proactive versions)
are suitable for the distributed storage systems described in Sec. 3.1.

3.2.1 Shamir’s Scheme. Secret sharing-based distributed storage
systems are generally based on this perfectly private threshold
secret sharing scheme proposed by Shamir [30]. Letn be the number
of storage servers S1, S2, . . . , Sn to which the shares are distributed,
t ≤ n be the threshold required for reconstruction, and Fq be a
field with q > n elements. Shamir’s secret sharing scheme relies on
the fact that, in a field, a polynomial of degree t − 1 is determined
uniquely by at least t points on it. However, knowing only t − 1 or
less points, one cannot reconstruct the polynomial. Secret sharing is
carried out with two protocols: Share, which takes a messagem as
input and produces n shares, and Reconstruct, which reconstructs
the original message m from any subset of t shares as input. To
share a message m ∈ Fq , the data owner chooses a polynomial

3

SCC’19, July 7–12 2019, Auckland, New Zealand Traverso, Ranly, Butin, and Buchmann

f (x) = a0 +a1x + · · ·+at−1xt−1 of degree t − 1, such that f (0) =m
and a1, . . . ,at−1 are chosen uniformly at random in Fq . Typically,
the data owner computes and distributes σi := f (i) to storage
servers Si for i = 1, . . . ,n, where σi is referred to as a share. In the
following, we denote this sharing algorithm as Share.

3.2.2 Tassa’s HSS Schemes. The conjunctive and disjunctive HSS
schemes proposed by Tassa [33] are the first HSS schemes based on
Birkhoff interpolation of polynomials. Shares are either points on a
polynomial or points on one of the derivatives of such polynomial.
A hierarchy is composed of levels L0, . . . , Lℓ , where L0 is the highest
level, Lℓ the lowest, and ℓ ≤ n. The cardinality of each level Lh
is denoted by nh and each shareholder is assigned to one level
only. In addition, a threshold th is associated with each level Lh , for
h ∈ 0, . . . , ℓ, such that 0 < t0 < · · · < tℓ . Tassa individuated two
types of access structures, defining, respectively the conjunctive and
the disjunctive HSS. The conjunctive access structure determines
that a subset A ⊂ S is authorized if, for all levels Lh , it contains th
shareholders assigned to levels equal or higher than Lh , for h =
0, . . . , ℓ. The disjunctive access structure specifies that a subsetA ⊂

S is authorized if, for at least one level Lh , it contains th shareholders
assigned to levels equal or higher than Lh , for h = 0, . . . , ℓ. In
the following, we write information relating to disjunctive HSS in
brackets. For conjunctive (disjunctive) HSS schemes the unique ID
of shareholder si , j ∈ S is a pair (i, j) ∈ I × I , where i = 1, . . . ,nh
and j := th−1 (j := tℓ − th), for h = 0, . . . , ℓ with t−1 := 0 and
t := tℓ . The algorithms Share and Reconstruct of the conjunctive
(disjunctive) HSS are as follows.

Share takes as input a messagem ∈ Fq and generates a polyno-
mial f (x) = a0+a1x + · · ·+at−1xt−1 of degree t −1, where a0 :=m
(at−1 := m) and the coefficients a1, . . . ,at−1 ∈ Fq (a0, . . . ,at−2 ∈

Fq) are chosen uniformly at random. It outputs share σi , j ∈ Fq for
shareholder si , j ∈ S computed as σi , j := f j (i), where f j (x) is the
j-th derivative of polynomial f (x) and pair (i, j) ∈ I ×I is the unique
ID of shareholder si , j ∈ S , for i = 1, . . . ,nh and h = 0, . . . , ℓ.

Reconstruct takes as input a set of shares held by a subset R ⊂ S
of shareholders. If R is unauthorized, i.e. R < Γ, then it outputs ⊥.
If R is authorized, i.e. R ∈ Γ, then it reconstructs polynomial f (x)
using Birkhoff interpolation and outputsm = a0 (m = at−1).

The Birkhoff interpolation problem is a generalization of the
Lagrange interpolation problem and describes the problem of find-
ing a polynomial f (x) = a0 + a1x + · · · + at−1xt−1 satisfying the
equalities f j (i) = σi , j . Given an authorized set R ∈ Γ of share-
holders for conjunctive (disjunctive) HSS schemes, the Birkhoff
interpolation problem can be solved as follows. The interpolation
matrix associated to set R is a binary matrix E where entry ei , j is 1
if shareholder si , j participates with share σi , j and 0 otherwise. We
denote by I (E) = {(i, j) such that ei , j = 1} the set containing the
entries of E in lexicographic order, i.e. the pair (i, j) precedes the
pair (i ′, j ′) if and only if i < i ′ or i = i ′ and j < j ′. The elements of
I (E) are denoted by (i1, j1), (i2, j2), . . . , (ir , jr), where r := |R |. Fur-
thermore, we set φ := {ϕ0,ϕ1,ϕ2, . . . ,ϕt−1} = {1, x, x2, . . . , xt−1}
and denote by ϕ

j
k the j-the derivative of ϕk , for k = 0, . . . , t − 1.

Then the matrix A(E,X ,φ) is defined as follows:

A(E,X ,φ) =

©«
ϕ
j1
0 (i1) ϕ

j1
1 (i1) ϕ

j1
2 (i1) · · · ϕ

j1
t−1(i1)

ϕ
j2
0 (i2) ϕ

j2
1 (i2) ϕ

j2
2 (i2) · · · ϕ

j2
t−1(i2)

...
...

... · · ·
...

ϕ
jr
0 (ir) ϕ

jr
1 (ir) ϕ

jr
2 (ir) · · · ϕ

jr
t−1(ir)

ª®®®®®¬
.

Then polynomial f (x) can be reconstructed by computing

f (x) =
t−1∑
k=0

det(A(E,X ,φk))
det(A(E,X ,φ))

xk ,

whereA(E,X ,φk) is obtained fromA(E,X ,φ) by replacing its (k+1)-
th column with the shares σi , j in lexicographical order.

4 A DECISION SUPPORT SYSTEM FOR
LONG-TERM STORAGE AND MPC

Due to a wealth of choices, it is difficult for data owners to make
informed decisions regarding which storage servers fromwhat SSPs
to include in their distributed storage system, which secret sharing
scheme to select, and share allocation to specific SSPs. We now
introduce a decision support system, enabled by a TA, to guide data
owners in establishing a distributed storage system. The provided
guidance includes the configuration of the shares distribution to be
adopted, given confidentiality, availability, and cost requirements
of the data owner. It also includes the most appropriate underlying
secret sharing scheme to be used, and its parameters.

We require the following two assumptions:
(1) The data owner has computational access to the storage

servers, i.e. the data owner is not limited to exclusive storage
usage, but can run computations on the storage servers. This
is crucial for the distributed storage system to periodically
run proactive secret sharing to refresh the shares, but also to
enable the data owners to perform computations on shared
data through MPC protocols.

(2) A performance scoring mechanism run by the TA already
exists. This mechanism is run periodically among all the stor-
age servers from all the SSPs available in the marketplace
(not just the ones included in the distributed storage sys-
tem) to compute up to date performance figures. We stress
that here performance is meant in a broad sense and the
performance figures reflect the overall quality of service of
a provider, as NIST has suggested [14]. We previously intro-
duced a peer-rating-based performance scoring mechanism
where a TA is in charge of the accuracy of the outputs [34].

To offer data owners effective decision support, the TA acts both
as a mediator and as a service orchestrator. On the one hand, the TA
is the mediator of the performance scoring mechanism. It decides
when to run the mechanism, and ensures it leads to scores reflecting
the actual performance of the storage servers. On the other hand,
the TA is the centralized point of orchestration of SSPs because it
provides an ad hoc plan of which secret sharing scheme to adopt,
which storage servers to select and where to place the shares.

In Sec. 4.1, the step-by-step protocol for the decision support
system is introduced. In Sec. 4.2, the confidentiality, availability,
and cost requirements are modeled.

4

Selecting Secret Sharing Instantiations for Distributed Storage SCC’19, July 7–12 2019, Auckland, New Zealand

4.1 Decision Support Protocol
In the following, we detail the decision support protocol enabled
as a service by a TA to guide data owners in the choice of the stor-
age servers making up a distributed storage system. Our protocol
principals are the data owner, the TA, and the storage servers from
multiple SSPs. The data owner wants to perform MPC over shared
documents, and to this end they agree on confidentiality and avail-
ability constraints, and how the MPC kernel should be implemented
(e.g. the MPC kernel of [4]). The TA enables the decision support
system by running a performance scoring mechanism and provides
a detailed executing plan for data owners that optimizes the cost
of the SSPs. As an example, we assume that Herzberg/Shamir’s
secret sharing scheme, Tassa’s conjunctive HSS scheme, and its
disjunctive variant are all options that the TA considers as possible
solutions for distributed storage. The choice of candidate secret
sharing schemes does not affect the general process. The protocol
among the clients, the TA, and the SSPs is as follows.

(1) A data owner decides the confidentiality and the availability
requirements of the distributed storage system it wants to
build. It is assumed that it wants to minimize the cost of the
distributed storage system given such requirements.

(2) The data owner sends a request to the TAwith these specifics.
(3) The TA takes into account these requirements and the perfor-

mance figures of the storage servers in the marketplace. Here
it is assumed that the performance figures are up to date,
i.e. that the TA has recently run the performance scoring
mechanism in place.

(4) The TA returns to the data owner the following criteria,
which minimize cost given data owner requirements.
• the secret sharing scheme to be used (i.e. Herzberg/Shamir
secret sharing, conjunctive Tassa secret sharing, or its dis-
junctive variant) and list of the corresponding parame-
ters (number of shares n, number of levels and respective
thresholds, if hierarchical);

• a list of high-performing storage servers (from different
SSPs) to be deployed;

• the amount and type of shares to be stored within each
storage server (and, thus, SSP).

(5) The data owner follows the criteria and runs the sharing
algorithm to store into the distributed storage system the
data to be outsourced.

(6) When enough storage servers are available, the data owner
can run the MPC protocol according to what is the secret
sharing scheme used to build the storage system.

This protocol can be adapted to a multi-user scenario, with the
caveat that the data owners willing to deploy the same distributed
storage system must agree on confidentiality and availability con-
straints before sending the request to the TA. Furthermore, when
running computations of shared data with an MPC protocol, each
data owner gets from the storage servers the partial results and
interpolates them locally to get the final result of the computation.
The computational overhead for long-term storage and MPC de-
pends on the reconstructing threshold and is independent on the
number of data owners leveraging the distributed storage system.

4.2 Constraint Modeling
In this section, we formalize constraints modelling secret shar-
ing scheme instantiation and shares allocation across the storage
servers of multiple SSPs. We model the problem of secret shar-
ing scheme identification through integer linear programming
(ILP) [24]. We design a set of ILP programs where the TA finds
the secret sharing scheme matching the most cost-efficient configu-
ration, given the data owner’s constraints in terms of confidentiality
and availability of the outsourced data. We target secret sharing
schemes that support MPC and shares renewal in polynomial time,
which makes their execution feasible in a reasonable amount of
time when the reconstructing threshold t is not too large. These are
Herzberg/Shamir secret sharing scheme, Tassa’s conjunctive HSS,
and its disjunctive variant. In the following, we denote by xi , j ,k
the number of shares of level j distributed to storage server Si of
SSP k . Integer N is the number of storage servers from allM SSPs
in the marketplace. For all the three sharing schemes that we take
into account, the objective function to minimize is:

N∑
i=1

H∑
j=1

M∑
k=1

xi , j ,k , (1)

which is subjected to constraints in terms of the adversary model,
confidentiality, reconstruction, fault tolerance, and provider diver-
sity. In the following, we show how to instantiate these constraint
for Herzberg/Shamir’s secret sharing scheme, and for Tassa’s con-
junctive and disjunctive HSS schemes. For both of Tassa’s schemes,
we set the amount H of spanned hierarchical levels to 3 for two
reasons. On the one hand, three levels are sufficient to under-
stand how the above mentioned constraints are instantiated for
the HSS schemes even if more levels were spanned. On the other
hand, a larger amount of spanned hierarchical levels would im-
ply a higher reconstructing threshold. This leads to both higher
computational and communication overhead (quadratic in the re-
constructing threshold), which would make the execution of MPC
unpractical, as pointed out in [4].

4.2.1 Adversary Model Constraint. This constraint is typically as-
sumed when considering practical applications of the secret sharing
primitive andMPC [3]. Normally, the adversarymodel taken into ac-
count is honest but curious. This means it seeks information about
the outsourced data by corrupting the storage servers. However, it
does not have enough power to make the storage servers deviate
from the protocols they are supposed to run. In order to cope with a
honest but curious type of adversary, an honest majority is assumed.
This assumption entails a lower bound on the total amount n of
shares generated. Given the reconstructing threshold t , the bound
for all three considered secret sharing schemes is n ≥ 2t − 1.

4.2.2 Confidentiality Constraints. They are set to ensure that none
of the SSPs across their storage servers included in the distributed
storage system have enough shares to successfully to reconstruct
the outsourced data by themselves. We denote by C1,k ,C2,k ,C3,k
the number of shares of, respectively, level L1, L2, L3 distributed
across all storage servers of one SSP, i.e. Cj ,k =

∑N
i=1 xi , j ,k , for

j ∈ {1, 2, 3} and k = 1, . . . ,M .
For Herzberg/Shamir and disjunctive Tassa, there is one con-

fidentiality constraint for each level. Recall from Sec. 3.2.2 that,
5

SCC’19, July 7–12 2019, Auckland, New Zealand Traverso, Ranly, Butin, and Buchmann

while the reconstructing threshold t corresponds to threshold t1
of the highest level L1, all levels have enough information to in-
dependently reconstruct the document, even though more and
more shares are requested. Thus, the confidentiality constraints for
Herzberg/Shamir and Tassa’s schemes are:

Cj ,k ≤ tj − 1 j ∈ {1, 2, 3} (2)

For Tassa’s conjunctive HSS, there are H − 1 confidentiality
constraints because the value of C1 is bounded by threshold tH of
the lowest level LH , which corresponds to reconstructing threshold
t . Recall that thresholds tH−j determine how many shares among
the tH shares must be from levels L1, . . . , LH−j , for j = 1, . . . ,H −1.
The two confidentiality constraints are:{

C2,k ≤ t2 −C1,k − 1
C1,k +C2,k +C3,k ≤ t3 − 1

(3)

Similar constraints (2) and (3) have to be set for each SSP k , i.e. for
k = 1, . . . ,M .

Summing up, Tassa’s disjunctive HSS scheme requiresH ·M con-
straints, while its conjunctive variant requires (H −1)·M constraints.

4.2.3 Reconstruction Constraints. They are set to ensure that the
shares distributed across the storage servers carry enough informa-
tion to reconstruct the document. That is, they ensure that enough
shares from each level are generated. We denote by R1,R2,R3
the number of shares of, respectively, level L1, L2, L3 distributed
across all storage servers of all SSPs, i.e. Rj =

∑N
i=1

∑M
k=1 xi , j ,k , for

j ∈ {1, 2, 3}. For Herzberg/Shamir and disjunctive Tassa, there is
one reconstruction constraint for each level. In the case of three
levels, the three reconstruction constraints are:

Rj ≥ tj j ∈ {1, 2, 3} (4)

For conjunctive Tassa, there is one reconstruction constraint
for each level. In the case of three levels, the three reconstruction
constraints are:

R1 ≥ t1
R2 ≥ t2 − R1
R3 ≥ t3 − (R1 + R2)

(5)

4.2.4 Fault Tolerance Constraints. They are set to reach a higher
level of availability and ensure that the document is reconstructed
even when a certain amount, say f , of SSPs is not available. We
denote by F

f
1 , F

f
2 , F

f
3 the number of shares of, respectively, level

L1, L2, L3 distributed across all endpoints (i.e., storage servers) of
allM SSPs except f of them, denoted by k1, . . . ,kf , that is:

F
f
j =

(
M

f

) N∑
i=1

M∑
k=1,k<{k1, ...,kf }

xi , j ,k , j ∈ {1, 2, 3}. (6)

Then, the fault tolerance constraints are the same as the recon-
struction constraints where F f1 , F

f
2 , F

f
3 are used instead of R1,R2,R3

in (4) and (5). The fault tolerance constraints are a generalization
of the reconstruction constraint with f = 0.

4.2.5 Provider Diversity Cost Constraint. From a data owner’s per-
spective, the optimal solution for (1) is the one minimizing the
number of SSPs. The reason is that transmission of data between
storage servers of different providers is needed to perform MPC
and the renewal of shares. However, this entails costs for the data
owner, while communication between storage servers from the
same provider is free. It is in the user’s interest to minimize this
cost by storing as many shares as possible (up to the reconstructing
threshold t) in one SSP.Gk denotes a Boolean variable representing
the fixed transmission cost payed by the user, which is 1 when
at least one endpoint of SSP k is chosen and is 0 otherwise. We
denote by Nk the amount of shares of all levels distributed across
the endpoints of a SSP k . Then, for each SSP k , the diversity cost
constraints are:

1
(t − 1)Nk

N∑
i=1

H∑
j=1

xi , j ,k ≤ Gk k = 1, . . . ,M . (7)

The constraints for the transmission cost among endpoints of dif-
ferent SSPs are modeled similarly to what happen when communi-
cating among different cloud service providers.

5 EVALUATING THE FEASIBILITY OF THE
CONSTRAINT SATISFACTION APPROACH

We tested the protocol presented in Sec. 4 to investigate: (i) the run-
ning time to output the criteria for themost cost-efficient distributed
storage system with different types of market configurations, and
(ii) which secret sharing scheme leads, on average, to such solu-
tion. We implemented the ILP problem modeled as described in
Sec. 4.2 in Python 3 by using the PuLP package [22]. PuLP pro-
vides an interface to define linear programs, which are decoupled
from the underlying LP-Solver. We used the linear problem solver
GLPK to evaluate performance of our implementation. Evaluations
were run on an Intel i7-3612QM CPU at 2.10GHz, with 8 GB of
RAM. We involved sixty data centers from six of the major public
cloud providers (AWS, OVH, Google, IBM, Microsoft, and Deutsche
Telekom) and evaluated our protocol with different distributions
of endpoints (i.e. storage servers in our model) across the SSPs.
For instance, we tested configurations where there are few SSPs
in the market owning many storage servers (e.g. 12 SSPs with 10
storage servers each) and configurations where there are many
SSPs in the market owning few storage servers (e.g. 90 SSPs with
2 storage servers each). The data owner gives as input the desired
confidentiality and fault tolerance constraints defined in Sec. 4.2,
where for our tests the reconstructing threshold t is between 2 and
10 and the amount f of possible unavailable SSPs is between 0
and 2. The reason behind these choices is that, on the one hand,
a reconstructing threshold t of 10 is high enough to see how the
behavior of the optimal solution evolves and higher values of t
would make the system impractical due to the communication over-
head generated during computations [4]. On the other hand, the
availability of current CSPs suggests that, in a distributed system,
it is unlikely that more than two SSPs hosted on cloud providers
are unavailable simultaneously.

The results are presented in Fig. 1, which shows how the time
necessary to output the optimal solution for the instantiation of a
distribute storage system is larger for higher fault tolerance. This

6

Selecting Secret Sharing Instantiations for Distributed Storage SCC’19, July 7–12 2019, Auckland, New Zealand

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

12 SSP
120 Eps

20 SSP
120 Eps

30 SSP
120 Eps

40 SSP
120 Eps

60 SSP
120 Eps

30 SSP
180 Eps

90 SSP
180 Eps

E
la

p
se

d
 (

s)

Execution-time Benchmarks

95thF0
95thF1
95thF2

Figure 1: Running times to determine themost cost-efficient
solutions for different types of market configurations and
fault tolerance requirements. In 95% of the test runs, such
a solution can be found at most in seconds for no fault tol-
erance or fault tolerance 1 for any type of market configu-
ration. Finding a solution with fault tolerance 2 requires at
most a few minutes. “Eps” stands for “Endpoints”.

is in particular remarkable for solutions with fault tolerance 2.
The amount of constraints to fulfill increases drastically when the
fault tolerance is greater than 1 because of the binomial coefficient
involved in the constraints. However, if the data owner requires
no fault tolerance or fault tolerance 1, which already leads to high
availability, the most cost-efficient solutions is output in a matter
of seconds. This is an affordable amount of time that users can wait
for in a realistic scenario.

6 EVALUATING RUN TIMES OF CANDIDATE
SECRET SHARING SCHEMES

In this section, we provide the first comparison in terms of run time
between Herzberg/Shamir’s secret sharing scheme and (the proac-
tive versions of) both of Tassa’s HSS schemes. In Sec. 3, we discussed
how the HSS schemes proposed by Tassa [33] lead to distributed
storage systems addressing scenarios where the shareholders are
organized in a hierarchical structure (such as companies, hospitals,
and institutions). The main reasons why Tassa’s schemes are good
building blocks for distributed storage systems are the following.
On the one hand, all the shares generated have the same length of
the data, meaning that more informative shares are not longer than
less informative shares. This way, all storage servers making up the
distributed storage system allocate the same storage space for the
outsourcing of data. On the other hand, Tassa’s HSS schemes are
polynomial-based primitives whose Reconstruction (see Sec. 3.2)
algorithm relies on solving a Birkhoff interpolation problem. This
is a generalization of the Lagrange interpolation problem used to
reconstruct the secret message in Herzberg/Shamir’s secret shar-
ing scheme. We demonstrate in this section that the run times for
Tassa’s HSS is comparable to Shamir’s secret sharing scheme, as
shown in Fig. 2.

The simulations where performed for (t,n) values (2, 3), (3, 5),
(4, 7), (5, 9), and (6, 11). With respect to Tassa’s conjunctive and
disjunctive secret sharing schemes, for every pair (t,n), all possible
hierarchical configurations with up to t levels were tested and the

average of the run time is what is displayed in the corresponding
plots of Fig. 2. The files to be shared were of size 100 Byte, 1 KB, and
10 KB. A 256 byte encoding was tested, where every 256 characters
from the file were converted to an integer in the finite field F22203−1.
Text files ranges from 100 byte to 100 kilobyte were used for the
evaluations. Measurements are taken in seconds for the execution
of each algorithm alone by using the internal clock time of the
processor. The simulations were performed on an Intel (Quad-Core)
i5-8250U CPU clocked at 1.6GHz, with 8 GB of RAM.

In Fig. 2, we compare the run times of algorithms Share for the
Herzberg/Shamir, conjunctive Tassa and disjunctive Tassa schemes.
For Shamir’s scheme, that means to compute t −1multiplication for
each share to be generated for a polynomial of degree t − 1. Besides
polynomials’ evaluation, algorithm Share of Tassa’s HSS schemes
requires also to compute up to t − 1 polynomials’ derivatives. How-
ever, the additional multiplications due to derivation are balanced
by the fewer multiplications needed when evaluating derivatives
of polynomials and this results into a slightly longer run time.

Algorithms Reconstruct of both Herzberg/Shamir and Tassa’s
schemes require Gaussian elimination to solve a system of t linear
equations in order to reconstruct the polynomial used to share the
message. Then, the message is retrieved through polynomial evalua-
tion. However, in the secret sharing framework the only coefficient
that matters is the free coefficient for Herzberg/Shamir and con-
junctive Tassa and the last coefficient for disjunctive Tassa. For the
HSS schemes, this implies that only determinants det(A(E,X ,φ0))
(det(A(E,X ,φt−1))) and det(A(E,X ,φ)) have to be computed, where
the latter can be computed in advance off-line. This leads to a com-
plexity of O(t3) for matrix A(E,X ,φ) of dimension t × t in case
the LU decomposition technique is used [1]. Also, Tassa’s disjunc-
tive’s Reconstruct algorithm is faster than the Tassa’s conjunctive
counterpart because the matrix A(E,X ,φt−1) has more zeros than
A(E,X ,φ0), leading to a faster computation of the determinants.
The Reconstruction algorithm of Herzberg/Shamir’s secret sharing
requires t − 1 multiplications. Fig. 2 shows that the three run times
are comparable, especially those of Herzberg/Shamir’s and Tassa’s
conjunctive secret sharing schemes.

Due to the relevance of MPC in this paper, in Fig. 2 we also
provide run times of the algorithm to perform linear operations
on (hierarchically) shared messages, referred to as Linear, and of
the algorithm to perform multiplications on (hierarchically) shared
messages, referred to as Multiply. In the following, we describe
algorithms Linear andMultiply for Tassa’s conjunctive and disjunc-
tive HSS schemes, which were first provided by Traverso et al. [36].
These algorithms mirror the corresponding algorithms Linear and
Multiply for Herzberg/Shamir [2], which can be easily derived by
substituting below share σi , j of a shareholder si , j with share σi of
shareholder si since all shares are equivalent and the shareholders
belong to the same level.

Linear takes as input shares σi , j (m1),σi , j (m2) ∈ Fq held by
shareholder si , j ∈ S , and scalars λ1, λ2 ∈ Fq . It outputs share
σi , j (m) := λ1 ·σi , j (m1)+λ2 ·σi , j (m2) ∈ Fq for shareholder si , j ∈ S .

Multiply takes as input shares σi , j (m1),σi , j (m2) ∈ Fq generated
during algorithm Share and shares σi , j (α),σi , j (β),σi , j (γ) ∈ Fq
held by shareholder si , j ∈ S generated during algorithm PreMult
(see Appendix A). It outputs share σi , j (m) ∈ Fq for messagem =
m1 ·m2, which is computed performing the following steps.

7

SCC’19, July 7–12 2019, Auckland, New Zealand Traverso, Ranly, Butin, and Buchmann

(a) Run time of algorithm Share. (b) Run time of algorithm Reconstruct.

(c) Run time of algorithm Linear. (d) Run time of algorithmMultiply.

Figure 2: Run time of Share, Reconstruct, Linear, andMultiply for Herzberg/Shamir, conjunctive Tassa and disjunctive Tassa.

(1) Shareholder si , j computes share σi , j (δ) := σi , j (m1)−σi , j (α)
and shareσi , j (ε) := σi , j (m2)−σi , j (β) using algorithm Linear.

(2) Shareholders from an authorized set R ∈ Γ run algorithm
Reconstruct with shares σi , j (δ),σi , j (ε) as input to publicly
reconstruct values δ , ε using the bulletin board.

(3) Shareholder si , j ∈ S computes the share σi , j (m) := σi , j (γ)+
ε · σi , j (m1) + δ · σi , j (m2) − δε using algorithm Linear.

The run times of Linear for Herzberg/Shamir’s secret sharing
scheme and for Tassa’s conjunctive and disjunctive HSS scheme
are practically the same. The run time for algorithm Multiply is
comparable as well. The gap between the run times of algorithm
Multiply for Herzberg/Shamir and for Tassa’s schemes is due to
the gap in run time between the corresponding algorithms Recon-
struct. Algorithm Multiply does not involve multiplications, but
only linear operations. That is because algorithmMultiply describes
the steps to be performed during the on-line phase only, i.e. once
certain multiplications are requested from the data owner. The
most intensive operations are instead carried out during the off-line
phase by RandShares and PreMult (see Appendix A). This allows
Tassa’s conjunctive and disjunctive HSS schemes to be as efficient
as Herzberg/Shamir for operations over shared messages.

7 CONCLUSION
Proactive secret sharing schemes are expensive to deploy, but en-
able information-theoretic confidentiality in distributed storage

systems protecting sensitive data sets. Data owners require guid-
ance in selecting suitable participating servers and the best-suited
secret sharing scheme. In this paper, we make the case for decision
support systems providing guidance for secret sharing scheme se-
lection and share allocation to storage service providers. We specify
the decision support system as a protocol processing a set of confi-
dentiality and availability constraints, input to a solver for integer
linear programming problems. The approach was evaluated on two
levels. First, we evaluated the practicality of the constraint solving
problem on data centers from major public cloud providers. This
first evaluation was agnostic with respect to the underlying secret
sharing scheme. This first evaluation showed that an infrastructure
configuration of storage servers fulfilling the specified requirements
can be found in minutes at most. Second, we compared the run
times of our candidate proactive secret sharing schemes, which
are based on initial schemes by Shamir and Tassa. This second
evaluation was performed independently of a specific cloud con-
figuration. We discussed trade-offs between the performances of
the considered secret sharing schemes for our specific setting. Our
evaluation showed that the additional complexity stemming from
the support of hierarchical structures in HSS only causes a minimal
performance impact for the online phase. In some cases, even a
performance gain is observed. The performance loss for the offline
phase is more significant, but unproblematic in practice since it
does not directly impact data owners. The gist of our approach is
general, and it can be instantiated with both different constraints
and other secret sharing scheme than the ones considered here.

8

Selecting Secret Sharing Instantiations for Distributed Storage SCC’19, July 7–12 2019, Auckland, New Zealand

REFERENCES
[1] Monika Agarwal and Rajesh Mehra. 2014. Review of Matrix Decomposition Tech-

niques for Signal Processing Applications. International Journal of Engineering
Research and Applications 4, 1 (2014), 90–93.

[2] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In CRYPTO (LNCS), Vol. 576. Springer, 420–432.

[3] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2015. How the
Estonian Tax and Customs Board Evaluated a Tax Fraud Detection System Based
on Secure Multi-party Computation. In FC 2015 (LNCS), Vol. 8975. Springer,
227–234.

[4] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In ESORICS 2008 (LNCS), Vol. 5283.
Springer, 192–206.

[5] Ernest F. Brickell and Douglas R. Stinson. 1990. Some Improved Bounds on the
Information Rate of Perfect Secret Sharing Schemes. In CRYPTO (LNCS), Vol. 537.
Springer, 242–252.

[6] Cloudify. 2017. Cloud & NFV Orchestration Based on TOSCA. http://cloudify.co.
[7] D-Wave. 2015. Announcing the D-Wave 2x Quantum Computer. https://www.

dwavesys.com/blog/2015/08/announcing-d-wave-2x-quantum-computer/.
[8] IvanDamgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally Secure

Multiparty Computation. In CRYPTO (LNCS), Vol. 4622. Springer, 572–590.
[9] Yehia Elkhatib. 2016. Mapping Cross-Cloud Systems: Challenges and Opportuni-

ties. In HotCloud 2016. USENIX Association.
[10] Oriol Farràs and Carles Padró. 2010. Ideal Hierarchical Secret Sharing Schemes.

In TCC 2010 (LNCS), Vol. 5978. Springer, 219–236.
[11] HashiCorp. 2017. Terraform. http://terraform.io.
[12] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive secret sharing or: How to cope with perpetual leakage. In CRYPTO’95.
Springer, 339–352.

[13] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-
tive Secret Sharing Or: How to Cope With Perpetual Leakage. In CRYPTO ’95
(LNCS), Vol. 963. Springer, 339–352. https://doi.org/10.1007/3-540-44750-4_27

[14] Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong. 2011. NIST Cloud Comput-
ing Standards Roadmap (NIST-SP 500-291). NIST Special Publication 35 (2011).

[15] Jingwei Huang and David M. Nicol. 2013. Trust mechanisms for cloud computing.
J. Cloud Computing 2 (2013), 9.

[16] Thomas P Jakobsen, Jesper BuusNielsen, and Claudio Orlandi. 2014. A Framework
for Outsourcing of Secure Computation. In ACM CCSW 2014. ACM, 81–92.

[17] Seny Kamara, Payman Mohassel, and Mariana Raykova. 2011. Outsourcing
Multi-Party Computation. Cryptology ePrint Archive, Report 2011/272. https:
//eprint.iacr.org/2011/272.

[18] Seny Kamara, Payman Mohassel, and Ben Riva. 2012. Salus: a system for server-
aided secure function evaluation. In CCS’12. ACM, 797–808.

[19] Seny Kamara and Mariana Raykova. 2011. Secure outsourced computation in a
multi-tenant cloud. 15–16.

[20] Jake Loftus and Nigel P. Smart. 2011. Secure Outsourced Computation. In
AFRICACRYPT 2011 (LNCS), Vol. 6737. Springer, 1–20.

[21] Thomas Loruenser, Andreas Happe, and Daniel Slamanig. 2015. ARCHISTAR:
towards secure and robust cloud based data sharing. In CloudCom 2015. IEEE,
371–378.

[22] Stuart Anthony Mitchell. 2018. PuLP package and GLPK solver. https://pypi.
python.org/pypi/PuLP.

[23] Alex Palesandro, Marc Lacoste, Nadia Bennani, Chirine Ghedira Guegan, and
Denis Bourge. 2017. Mantus: Putting Aspects to Work for Flexible Multi-Cloud
Deployment. In CLOUD2017. IEEE Computer Society, 656–663.

[24] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization:
algorithms and complexity. Courier Corporation.

[25] Andreas Peter, Erik Tews, and Stefan Katzenbeisser. 2013. Efficiently Outsourcing
Multiparty Computation Under Multiple Keys. IEEE Trans. Information Forensics
and Security 8, 12 (2013), 2046–2058.

[26] Puppet. 2019. http://www.puppet.com.
[27] Red Hat. 2019. Ansible. http://www.ansible.com.
[28] RSA. 2011. Press Release: RSA Establishes Cloud Trust Authority to Accelerate

Cloud Adoption. https://www.emc.com/about/news/press/2011/20110214-01.
htm.

[29] Faiza Samreen, Yehia Elkhatib, Matthew Rowe, and Gordon S. Blair. 2016. Daleel:
Simplifying cloud instance selection using machine learning. In NOMS 2016. IEEE,
557–563.

[30] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
[31] Gustavus J. Simmons. 1990. How to (Really) Share a Secret. In CRYPTO’ 88 (LNCS),

Vol. 403. Springer, 390–448.
[32] Daniel Slamanig, Agi Karyda, and Thomas Lorünser. 2016. PRISMACLOUD —

Privacy and Security Maintaining Services in the Cloud. ERCIM News 2016, 104
(2016), 46–46.

[33] Tamir Tassa. 2007. Hierarchical Threshold Secret Sharing. J. Cryptology 20, 2
(2007), 237–264.

[34] Giulia Traverso, Denis Butin, Johannes Buchmann, and Alex Palesandro. 2018.
Coalition-Resistant Peer Rating for Long-Term Confidentiality. In PST 2018. IEEE
Computer Society, 1–10.

[35] Giulia Traverso, Denise Demirel, and Johannes Buchmann. 2016. Dynamic and
verifiable hierarchical secret sharing. In ICITS 2016 (LNCS), Vol. 10015. Springer,
24–43.

[36] Giulia Traverso, Denise Demirel, and Johannes Buchmann. 2018. Performing
Computations on Hierarchically Shared Secrets. In AFRICACRYPT 2018 (LNCS),
Vol. 10831. Springer, 141–161.

[37] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, George Kesidis, and Qianlin
Liang. 2017. Exploiting Spot and Burstable Instances for Improving the Cost-
efficacy of In-Memory Caches on the Public Cloud. In EuroSys 2017. ACM, 620–
634.

[38] Thomas Watson et al. 2018. A programmable two-qubit quantum processor in
silicon. Nature 555, 7698 (2018), 633–637.

[39] Andreas Wittig and Michael Wittig. 2015. Amazon Web Services in Action. Man-
ning Publications Co.

A RUN TIMES FOR MULTIPLICATION
PREPROCESSING ALGORITHMS

The following algorithms RandShares and PreMult are adaptations
of the algorithms for Shamir’s secret sharing scheme proposed by
Damgård and Nielsen [8] to fit the hierarchical setting. These are
the off-line operations performed to compute the multiplication
over shares secrets, i.e. to perform algorithmMultiply of Sec. 6.

During the off-line phase, a triple (α, β,γ) is generated such that
the following conditions hold:

• α · β = γ .
• Each shareholder si , j ∈ S with ID (i, j) ∈ I × I holds shares
σi , j (α) := f

j
α (i),σi , j (β) := f

j
β (i), and σi , j (γ) := f

j
γ (i), where

fα (x), fβ (x), and fγ (x) are the polynomials of degree t − 1
sharing α, β , and γ , respectively.

We present RandShares to compute shares σi , j (α) for α , but it
can be run analogously to generate shares σi , j (β) for β .
RandShares takes as input values αi , j ∈ Fq chosen uniformly at
random by shareholders si , j ∈ S . It outputs shares σi , j (α) of mes-
sage α ∈ Fq for shareholders si , j ∈ S . To do that, each shareholder
si , j ∈ S has to perform the following steps.

(1) It chooses a secret message αi , j ∈ Fq uniformly at random.
(2) It runs Share to generate a polynomial fαi , j (x) of degree t−1

defined as fαi , j (x) := a0,(i , j) +a1,(i , j)x + · · ·+at−1,(i , j)x
t−1,

where a0,(i , j) = αi , j (at−1,(i , j) = αi , j) and a1,(i , j), . . . ,
at−1,(i , j) ∈ Fq (a0,(i , j), . . . ,at−2,(i , j) ∈ Fq) are chosen uni-
formly at random. Shares σi′, j′(αi , j) for shareholders si′, j′ ∈
S with ID (i ′, j ′) , (i, j) are computed as σi′, j′(αi , j) :=
f
j′
αi , j (i

′). Share σi , j (αi , j) for shareholder si , j itself is com-
puted as σi , j (αi , j) := f

j
αi , j (i).

(3) It sends shares σi′, j′(αi , j) to shareholders si′, j′ ∈ S with
ID (i ′, j ′) , (i, j) using a private channel and keeps share
σi , j (αi , j).

(4) It runs Linear of Sec. 6 to compute share σi , j (α) using share
σi , j (αi , j) and all the shares σi , j (αi′, j′) received from share-
holders si′, j′ as σi , j (α) :=

∑
(i′, j′),(i , j) σi , j (αi′, j′) +σi , j (αi , j).

PreMult takes as input shares σi , j (α),σi , j (β) for each shareholder
si , j ∈ S computed by RandShares and outputs for each shareholder
si , j ∈ S a triple of shares σi , j (α),σi , j (β),σi , j (γ) ∈ Fq , such that for
each triple it holds that σi , j (γ) = σi , j (αβ). Each shareholder sl ∈ R
from an authorized subset R ∈ Γ performs the following steps:

9

http://cloudify.co
https://www.dwavesys.com/blog/2015/08/announcing-d-wave-2x-quantum-computer/
https://www.dwavesys.com/blog/2015/08/announcing-d-wave-2x-quantum-computer/
http://terraform.io
https://doi.org/10.1007/3-540-44750-4_27
https://eprint.iacr.org/2011/272
https://eprint.iacr.org/2011/272
https://pypi.python.org/pypi/PuLP
https://pypi.python.org/pypi/PuLP
http://www.puppet.com
http://www.ansible.com
https://www.emc.com/about/news/press/2011/20110214-01.htm
https://www.emc.com/about/news/press/2011/20110214-01.htm

SCC’19, July 7–12 2019, Auckland, New Zealand Traverso, Ranly, Butin, and Buchmann

(a) Run time of algorithm RandShares. (b) Run time of algorithm PreMult.

Figure 3: Run times of RandShares and PreMult for Herzberg/Shamir, conjunctive Tassa and disjunctive Tassa.

(1) Use its shares σl (α) and σl (β) and the unique ID (i, j) of
shareholder si , j to compute the values λml ,(i , j) and µml ,(i , j)
defined as:

λml ,(i , j) :=σl (α)
j∑

k=m

k!
(k −m)!

(−1)l−1+k
det(Al−1,k (E,X ,φ))

det(A(E,X ,φ))
ik−m,

and

µml ,(i , j) :=σl (β)
j∑

k=m

k!
(k −m)!

(−1)l−1+k
det(Al−1,k (E,X ,φ))

det(A(E,X ,φ))
ik−m,

where m = 0, . . . , j and A(E,X ,φ) and Al−1,k (E,X ,φ) are
the matrices defined in Sec. 3.

(2) Randomly split λml ,(i , j) and µ
m
l ,(i , j) into r values, i.e. λ

m
l ,(i , j) =

λm1,l ,(i , j)+· · ·+λ
m
r ,l ,(i , j) and µ

m
l ,(i , j) = µm1,l ,(i , j)+· · ·+µ

m
r ,l ,(i , j).

(3) Send λmu ,l ,(i , j) and µmu ,l ,(i , j) to shareholder su ∈ R, for u =
1, . . . , r and u , l , using a private channel.

(4) Collect all values λml ,u ,(i , j) and µml ,u ,(i , j) received from share-
holder su ∈ R, for u = 1, . . . , r and u , l , and computes
δml ,(i , j) :=

∑r
u=1 λ

m
l ,u ,(i , j) and εml ,(i , j) :=

∑r
u=1 µ

m
l ,u ,(i , j), for

m = 0, . . . , j.
(5) Send δml ,(i , j) and εml ,(i , j) to shareholder si , j using a private

channel.
Then, all shareholders within the set S compute their shares.

Each shareholder si , j ∈ S performs the following steps:
(1) Compute δm

(i , j) :=
∑r
l=1 δ

m
l ,(i , j) and εm

(i , j) :=
∑r
l=1 ε

m
l ,(i , j) us-

ing the values δml ,(i , j) and ε
m
l ,(i , j), form = 0, . . . , j, received

from shareholder sl ∈ R, for l = 1, . . . , r .
(2) Compute share σi , j (γ) as

σi , j (γ) := σi , j (αβ) =

j∑
m=0

(
j

m

)
δ
j−m
(i , j) · εm

(i , j).

Fig. 3 shows run times for algorithms RandShares and PreMult
both for Herzberg/Shamir and for conjunctive and disjunctive Tassa.
For RandShares and PreMult, the run times for conjunctive and
disjunctive Tassa are longer than for Herzberg/Shamir. However,
these algorithms can be run in advance and do not affect the data
owner directly.

B PROACTIVE SECRET SHARING SCHEMES
In the following, we present the proactive versions of Shamir’s and
Tassa’s secret sharing schemes. We start with Herzberg’s proactive
version [13] of Shamir’s scheme.

B.1 Proactive Herzberg/Shamir Secret Sharing
Share. Letm ∈ Fq be the message to be shared with shareholders
s1, s2, . . . , sn , where i ∈ I is the unique ID of storage server Si .
After defining the polynomial f (x) = a0 + a1x + · · · + at−1xt−1,
where a0 := m and a1,a2, . . . ,at−1 ∈ Fq are chosen uniformly at
random, the data owner computes share σi for shareholder si as
σi := f (i) and it sends it to shareholder si , for i = 1, 2, . . . ,n.
Renew. For each shareholder si performs the following steps, for
i = 1, . . . , t :

1. Select a polynomial fi (x) = ai ,0 + ai ,1x + · · · + ai ,t−1xt−1,
where ai ,0 = 0 and ai ,1,ai ,2, . . . ,ai ,t−1 ∈ Fq are chosen
uniformly at random.

2. Compute randomness value σj ,i := fi (j) for shareholder sj ,
for j , i , and randomness value σi ,i := fi (i).

3. Send randomness value σj ,i to shareholder sj for j , i , keep
randomness value σi ,i private.

4. Receive randomness value σi , j from shareholder sj , for j , i .
5. Compute updated share σ ′

i as σ
′
i := σi +

∑n
j=1 σi , j .

6. Delete old share σi .

Reconstruct. t valid shares σ1,σ2, . . . ,σt are used as input to re-
construct polynomial f (x) by using Lagrange interpolation. The
message is retrieved as f (0) =m.

B.2 Proactive Traverso/Tassa Secret Sharing
We now present Traverso’s proactive version [35] of Tassa’s con-
junctive and disjunctive hierarchical secret sharing scheme. Every-
thing is discussed for the conjunctive access structure; the equiva-
lent for the disjunctive one can be found in brackets.
Share. Letm ∈ Fq be the message to be shared with shareholder
si , j with unique identity ID (i, j) ∈ I × I . After defining polynomial
f (x) = a0 + a1x + a2x2 + · · · + at−1xt−1, where a0 =m (at−1 =m)
and a1, . . . ,at−1 ∈ Fq (a0, . . . ,at−2 ∈ Fq) are chosen uniformly at

10

Selecting Secret Sharing Instantiations for Distributed Storage SCC’19, July 7–12 2019, Auckland, New Zealand

random, the data owner computes shareσi , j = f j (i) for shareholder
si , j ∈ Lh , for i = 1, . . . ,nh and h = 0, . . . , ℓ.
Renew. Each shareholder sl ∈ R (where R is an authorized subset
of shareholders of cardinality r) performs the following steps, for
l = 1, . . . , r :

(1) It computes its partial Birkhoff interpolation coefficient

al ,0 := σl (−1)l−1
det(Al−1,0(E,X ,φ))
det(A(E,X ,φ))(

al ,t−1 = σl (−1)l+t−2
det(Al−1,t−1(E ,X ,φ))

det(A(E ,X ,φ))
)
.

(2) It chooses a polynomial fl (x) = al ,0 + al ,1x + al ,2x
2 +

· · · + al ,t−1x
t−1 of degree t − 1, where al ,0 = al ,0 (al ,t−1 =

al ,t−1) is the partial Birkhoff interpolation coefficient and

al ,1, . . . ,al ,t−1 ∈ Fq (al ,0, . . . ,al ,t−2 ∈ Fq) are chosen uni-
formly at random.

(3) It computes randomness σl ,i , j for shareholder si , j ∈ S as
σl ,i , j := f ′

j
l (i).

(4) It sends randomness σl ,i , j to shareholder si , j ∈ S using a
private channel.

(5) It deletes its share.
Each new shareholder si , j ∈ S computes its share σ ′

i , j adding all
randomness σl ,i , j received, i.e. σ ′

i , j := σi , j +
∑r
l=1 σl ,i , j .

Reconstruct. It takes as input shares held by a subset R ⊂ S of
shareholders. If R ∈ Γ, it outputsm reconstructed using Birkhoff
interpolation. It outputs ⊥ otherwise.

11

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Distributed Storage Systems
	3.2 Suitable Secret Sharing Schemes for Distributed Storage Systems

	4 A Decision Support System for Long-Term Storage and MPC
	4.1 Decision Support Protocol
	4.2 Constraint Modeling

	5 Evaluating the Feasibility of the Constraint Satisfaction Approach
	6 Evaluating Run Times of Candidate Secret Sharing Schemes
	7 Conclusion
	References
	A Run Times for Multiplication Preprocessing Algorithms
	B Proactive Secret Sharing Schemes
	B.1 Proactive Herzberg/Shamir Secret Sharing
	B.2 Proactive Traverso/Tassa Secret Sharing

